On computation of some distance-based topological indices of circulant networks
نویسندگان
چکیده
منابع مشابه
Distance-based topological indices of tensor product of graphs
Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...
متن کاملDistance-Based Topological Indices and Double graph
Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...
متن کاملRelations between Zagreb Coindices and Some Distance–Based Topological Indices∗
For a nontrivial graph G, its first Zagreb coindex is defined as the sum of degree sum over all non-adjacent vertex pairs in G and the second Zagreb coindex is defined as the sum of degree product over all non-adjacent vertex pairs in G. Till now, established results concerning Zagreb coindices are mainly related to composite graphs and extremal values of some special graphs. The existing liter...
متن کاملON DISTANCE-BASED TOPOLOGICAL INDICES OF HC5C7[4p,8] NANOTUBES
Let G be a connected graph, nu(e) is the number of vertices of G lying closer to u and nv(e) is the number of vertices of G lying closer to v. Then the Szeged index of G is defined as the sum of nu(e)nv(e), over edges of G.. The PI index of G is a Szeged-like topological index defined as the sum of [mu(e)+ mv(e)], where mu(e) is the number of edges of G lying closer to u than to v, mv(e) is the...
متن کاملInterrelations of Graph Distance Measures Based on Topological Indices
In this paper, we derive interrelations of graph distance measures by means of inequalities. For this investigation we are using graph distance measures based on topological indices that have not been studied in this context. Specifically, we are using the well-known Wiener index, Randić index, eigenvalue-based quantities and graph entropies. In addition to this analysis, we present results fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2017
ISSN: 1303-5010
DOI: 10.15672/hjms.2017.407